
<<

Senior Design Spring ’21
Team 48

Team

Chris Woods
Ty Gardner
Jacob Martin

Client and Advisor

Dr. DanielsMitchell Wadle
Ash Singh
Joyeux Noel

Problem Statement
Currently, in the marketplace there is very little
support for creating a dynamic pattern of lights that
are displayed on a Christmas tree and especially one
that allows the user full control over each light.

So, to enhance the holiday experience Team 48’s
mission is to come up with a strategy to calibrate the
LEDs in real time using a dual Raspberry Pi setup and
image processing algorithm which allows the user to
configure the patterns that are displayed on the spot.

Previous Teams - What we were given
● Completed control box with programmable string of

LEDs (WS2811)

● Two Raspberry Pis (Tree Pi, Camera Pi)

● Website with two pages

● WIP calibration feature

● A few hardcoded patterns

● Prototype lazy susan

Plans/Goals to accomplish
● Fix calibration process

○ More accurate LED detection

○ Converting between coordinate systems

○ Better data structures

● Message queue on web application

● Dynamic pattern mapping and rendering

● Motorized lazy susan

Functional Requirements

● Easy to install

● Controlled remotely via web server

● Operate independently

● Calibrated with camera

● Calibration is easy to complete

● Display patterns/animations

Non-Functional Requirements

● Material cost under $100

● Calibration takes less than 1 hour

● Time to update patterns is less than 3 seconds

System Design

Resources Requirements
Hardware

Two Raspberry Pi Model 3B/3B+

● Control Box

○ 12 V, 30 A power supply

○ LM2896 SMPS to step down 12V-6V

● Raspberry Pi Camera V2

● WS2811 LED strip

● ROB-12779 Stepper driver and
ROB-10551 12V Bipolar stepper motor

Software

Apache HTTP Server

○ PHP

● Python 3

○ Paramiko(SSH)

○ OpenCV, and PIL (computer vision)

○ Numpy (data processing)

○ Rpi_ws281x (LED control)

○ ZeroMQ(message queue)

Results - What We Accomplished

● Replaced Raspberry Pis with fresh install
● Functional calibration with reliable light detection

Using HSV filter, contours, and minimum enclosing circle from
CV2

● Pattern rendering implemented and tested
● Main loop logic redesigned with message queue
● Construction of new Lazy Susan with setup for adding a stepper

motor for automatic rotation
● Automated the turning of Wireless Access Point on, or off on

Tree Pi

Demo - Successful Calibration Startup

https://docs.google.com/file/d/1x92MkLsGcHLQ_3mTO7hiJm-3OWDr6UoC/preview

Demo - Time Lapse of 1 complete face

https://docs.google.com/file/d/1l2zAM2odx-6-XB5JRo9N9w9luZGmrEHc/preview

Demo - Successfully Rendered Patterns

Biggest Challenges
Calibration

Existing code double-dipped with python 2.7 and 3.7 dependencies,
making it impossible to run everything at once

Difficulties configuring WAP connection reliably on both Pis

Python 2 and 3 along with pip and its installed packages were
associated incorrectly, presenting problems with installing new
libraries

Calibration procedure took roughly 1.4 hours (5 seconds per LED
multiplied by 250 for the total number of LEDs, and multiplied again
by 4 for all the faces) - mainly due to image processing/ sleep time

Lazy Susan

Issue with how the stepper motor counts the steps - adjusted for an
increased turning speed

Constraints and Considerations
Limited by Raspberry Pi

● Python libraries
● Wireless challenges

Pattern rendering

● On the fly

Early technical challenges

● Python versions
● File corruption/Pi issues

COVID-19 Lab Restrictions

● Reduced lab hours
● Reservations

Schedule
Gantt chart for First Semester:

Gantt chart for Second Semester:

Risks (Identification and Mitigation)
Software:

● Inaccurate Calibration

○ Mitigation strategy: try various techniques and test examples of code

similar to what we are trying to accomplish until it is foolproof

● OpenCV

● Python

○ Mitigation strategy: fresh install of a RPi OS image on a new SD card

Hardware:

● Electric Shock

● Fire

● Burning out LEDs or Pis

Testing
Software

● Took pictures of lights under different lighting
conditions to verify LED detection

● Created sample data to test coordinate conversion and
pattern rendering

● Integrated components individually to observe errors
and make sure everything is working together properly

● Ran code with debug statements to check program state
at various points in the process

Hardware

● Ensure components given to us by the previous team were
still in working order

Lessons Learned
● Create a well thought out specification and system architecture

before major code efforts are done

○ Prevents code conflicts and miscommunications later on

● Use our instincts, especially when we get the feeling that
something is wrong - and make mistakes early

○ For example at the start of this semester we felt like
starting over for the calibration procedure, but we spent a
few extra weeks trying to debug errors related to calibration
and trying to get it to work. But we had to start over halfway
through the semester with a new SD card and a fresh install of
the RPi OS image

● Have confidence and trust our own judgment when making decisions

○ While this is cliché, it applies here because after multiple
attempts at calibration, we realized that when we follow
through with our own decisions we made progress much faster

Future Work
● Finish functionality on the web application that allows the user

to upload their own images that can be rendered onto the tree

○ Have preview images of what the pattern would look like on

the tree

● Update pattern mapping to work with animated GIFs instead of just

static images

● Finish the remaining work related to the Lazy Susan

○ Move the stepper motor so that it can generate more torque to

move the tree

Questions/
Comments?

